ivy.birthdeath module

Equations from Magallon and Sanderson 2001

ivy.birthdeath.Alpha(epsilon, r, t)[source]

Calculate Alpha

Parameters:
  • epsilon (float) – Relative extinction rate(d/b)
  • r (float) – Net diversification rate (b-d).
  • t (float) – Elapsed time
Returns:

Alpha

Return type:

Float

ivy.birthdeath.Beta(epsilon, r, t)[source]

Calculate Beta

Parameters:
  • epsilon (float) – Relative extinction rate(d/b)
  • r (float) – Net diversification rate (b-d).
  • t (float) – Elapsed time.
Returns:

Beta

Return type:

Float

ivy.birthdeath.Kendall1948(i, t, r, epsilon)[source]

Probability of observing i species given single ancestor after time t

Parameters:
  • i (int) – Number of extant species
  • t (float) – Elapsed time
  • r (float) – Net diversification rate (b-d)
  • epsilon (float) – Relative extinction (d/b)
ivy.birthdeath.Nbar(t, a, r, epsilon)[source]

Mean clade size conditional on survival of the clade

Parameters:
  • t (float) – Elapsed time
  • a (int) – Number of lineages at t=0
  • r (float) – Net diversification rate (b-d)
  • epsilon (float) – Relative extinction (d/b)
ivy.birthdeath.condKendall1948(i, t, r, epsilon)[source]

Probability of observing i species given a single ancestor after time t conditional on the clade surviving to time t

Parameters:
  • i (int) – Number of extant species
  • t (float) – Elapsed time
  • r (float) – Net diversification rate (b-d)
  • epsilon (float) – Relative extinction (d/b)
ivy.birthdeath.condPrN(i, t, a, r, epsilon)[source]

Conditional probability of i species after time t, given the probability of survival

Parameters:
  • i (int) – Number of extant species
  • t (float) – Elapsed time
  • a (int) – Number of lineages at t=0
  • r (float) – Net diversification rate (b-d)
  • epsilon (float) – Relative extinction (d/b)
ivy.birthdeath.logLT(t, n, r, epsilon)[source]

Log-likelihood of terminal taxa

Parameters:
  • t – vector of stem ages
  • n – vector of diversities
  • r (float) – net diversification
  • epsilon (float) – Relative extinction
ivy.birthdeath.prN(i, t, a, r, epsilon)[source]

Probability of observing i species after time t

Parameters:
  • i (int) – Number of extant species
  • t (float) – Elapsed time
  • a (int) – Number of lineages at t=0
  • r (float) – Net diversification rate (b-d)
  • epsilon (float) – Relative extinction (d/b)
ivy.birthdeath.r_hat_crown(t, n, epsilon)[source]
ivy.birthdeath.r_hat_stem(t, n, epsilon)[source]